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Abstract

A Nusselt number, appropriate for forced convection in a channel bounded by two parallel plate walls heated asym-

metrically, is introduced and evaluated for various velocity profiles, for either uniform heat flux or uniform temperature

boundary conditions. It is shown that the value of this new Nusselt number is independent of the asymmetry if and only

if the velocity profile is symmetric with respect to the midline of the channel.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of forced convection in a channel be-

tween two parallel plate walls is a classical problem that

has been revisited in recent years in connection with the

cooling of electronic equipment using materials involv-

ing hyperporous media or microchannels. Recently pub-

lished textbooks and handbooks, such as those by Bejan

[1] and Kakaç et al. [2], devote substantial space to the

case of symmetric heating but little to the more compli-

cated case of asymmetric heating. However, this case is

mentioned in Shah and London [3, pp. 155–157] and

Kakaç et al. [2, pp. 3.31–3.32], where the following re-

sults are given, without details of derivation. (An outline

derivation is given in Kays and Crawford [4].)

Nu1 �
2Hq001

kðT w1 � TmÞ
¼ 140

26 � 9ðq002=q001Þ

Nu2 �
2Hq002

kðT w2 � TmÞ
¼ 140

26 � 9ðq001=q002Þ

ð1a;bÞ
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HereNu1 andNu2 are Nusselt numbers defined separately

for the two walls. These numbers are defined in terms of

the hydraulic diameter (twice H, where H is the distance

between the plates), the constant heat fluxes q001 and q002 di-

rected into the channel at the two walls, and the wall tem-

peratures Tw1 and Tw2, while Tm is the mixing cup mean

temperature and k the thermal conductivity.

It is obvious that Nu1 becomes infinite and then neg-

ative when q002=q
00
1 increases through the value 26/9. Of

course, this simply corresponds to the fact that the tem-

perature difference Tw1 � Tm then passes though a zero

value. Nevertheless, the presence of such singularities

reduces the usefulness of the Nusselt numbers defined

in this way, and this suggests that there might be a better

way of characterizing the heat transfer.

An influx of q001 and q002 at the respective walls is equiv-

alent to the superposition of heat fluxes ðq001 � q002Þ=2 into

the channel at each wall and a through flux ðq001 þ q002Þ=2
across the channel from the first wall to the second.

Forced convection essentially involves a balance be-

tween the net influx of heat into the channel and convec-

tive transport along the channel. The through flux plays

a passive role. This fact, together with the fact that the
ed.
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thermal energy equation (Eq. (4) below) is linear in the

temperature variable, suggests that there might be cir-

cumstances in which it is sufficient to concentrate on a

study of the effect of the net influx. Indeed there are such

circumstances.

In this paper the following theorem is established,

first for the case where the heat flux at each boundary

wall is uniform along the wall and then for the case

where the temperature at each wall is held uniform:

The value of the Nusselt number defined in terms of the

average heat flux and the average wall temperature is

independent of the ratio q001=q
00
2 (and so is identical with

value of the usual Nusselt number defined for the case of

symmetric heating) provided that the velocity profile is

symmetric with respect to the midline of the channel.

Clearly, this theorem does not apply to Couette flow,

the subject of the study by Xiong and Kuznetsov [5].

However, the result is relevant in cases that include

Poiseuille flow and slug flow, and it means that a great

deal of work on forced convection with symmetric heat-

ing (such as that reported in Nield et al. [6] and in studies

referenced in that paper or reviewed by Nield and Bejan

[7]) can, without further calculation, be applied in a

wider context, to asymmetric heating as well as symmet-

ric heating. This is a major gain, because so far few stud-

ies of the asymmetric heating situation have been

published.
2. Analysis

We consider fully developed convective flow. The sit-

uation considered is shown in Fig. 1. The dimensional

variables are denoted by means of asterisks. The average

wall temperature and average wall heat flux are defined

as
Fig. 1. Definitio
T wl ¼ 1

2
ðT w1 þ T w2Þ

q00l ¼ 1

2
ðq001 þ q002Þ

ð2a;bÞ

The mean velocity and mean temperature are defined by

um ¼ 1

H

Z H

0

u� dy�

Tm ¼ 1

umH

Z H

0

u�T � dy�
ð3a;bÞ

The thermal energy equation, for the case of large Péclet

number so that the longitudinal conduction is negligible,

is

u�
oT �

ox�
¼ k

qcP

o2T �

oy�2
ð4Þ

The first law of thermodynamics implies that

dT �
m

dx�
¼

2q00l
qcPHum

ð5Þ

We now introduce nondimensional variables defined by

u ¼ u�

um

; T ¼ T � � T wl

Tm � T wl
; y ¼ y�

H
ð6a;b;cÞ

and define a Nusselt number by

Nu ¼
2Hq00l

kðT wl � TmÞ
ð7Þ

For the isoflux case, Eqs. (4) through (7) then lead to

d2T
dy2

¼ �Nu u ð8Þ

The boundary conditions lead to

T ð0Þ ¼ b; T ð1Þ ¼ �b ð9a;bÞ
n sketch.
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where, for convenience, we have introduced the short-

hand notation

b ¼ T w1 � T w2

2ðTm � T wlÞ
ð10Þ

We now consider velocity profiles of the form

u ¼ c0 þ c1y þ c2y2 ð11Þ

Particular special cases are

(i) Slug flow: c0 = 1, c1 = 0, c2 = 0;

(ii) Poiseuille flow: c0 = 0, c1 = 6, c2 = �6;

(iii) Couette flow: c0 = 0, c1 = 2, c2 = 0.

The solution of Eq. (8) subject to the boundary con-

ditions (9a,b) is then

T ¼ 1

12
Nuf6c0ðy � y2Þ þ 2c1ðy � y3Þ þ c2ðy � y4Þg

þ bð1 � 2yÞ ð12Þ

The boundary heat fluxes can now be computed as

q001 ¼ q00l � 4b
Nu

þ a1

� �

q002 ¼ q00l
4b
Nu

þ a2

� � ð13a;bÞ

where a1 = a2 = 1 for either slug flow or Poiseuille flow,

and a1 = 2/3, a2 = 4/3 for the case of Couette flow. It fol-

lows that

b ¼ Nu
q002 � q001

4ðq001 þ q002Þ
þ a1 � a2

8

� �
ð14Þ

Substitution of u and T into the compatibility conditionZ 1

0

uT dy ¼ 1 ð15Þ

yields the value of the Nusselt number. The following re-

sults are readily obtained.

Slug flow : Nu ¼ 12 ð16aÞ

Poiseuille flow : Nu ¼ 140=17 ð16bÞ

Couette flow : Nu ¼ ð45 þ 15bÞ=4 ð16cÞ

It is remarkable that, in the case of either slug flow or

Poiseuille flow, the value of Nu is independent of b, and

hence independent of whether the heating is symmetric

or asymmetric. In the case of Couette flow the use of

Eq. (14), together with Eq. (16c), leads to the expression

Nu ¼ 30q001 þ 30q002
6q001 þ q002

ð17Þ

To complete the picture, we note that some simple

algebra leads to the relationships between our Nusselt

number Nu and the Nusselt numbers Nu1 and Nu2 em-
ployed by Shah and London [3], as given by Eq.

(1a,b), for the case of asymmetric flow.

In the case of slug flow, one finds that

Nu1 ¼
12

2 � ðq002=q001Þ

Nu2 ¼
12

2 � ðq001=q002Þ

ð18a;bÞ

In the case of Poiseuille flow one obtains the expressions

given in Eq. (1a,b), as expected.

In the case of Couette flow, a more complicated calcu-

lation gives

Nu1 ¼
15 þ 15ðq002=q001Þ

8 þ 6ðq002=q001Þ � 2ðq002=q001Þ
2

Nu2 ¼
15 þ 15ðq001=q002Þ

3 þ ðq001=q002Þ � 2ðq001=q002Þ
2

ð19a;bÞ

The results in Eq. (18a,b) agree with those in [3], while

those in Eq. (19a,b) are thought to be new. It is clearly

preferable to use Nu rather than Nu1 and Nu2, on the

grounds of simplicity as well as absence of any

singularity.
3. Proof of the theorem for the isoflux case

We have already shown that Nu is independent of b
in the case of slug flow and Poiseuille flow. We now

show that the same is true more generally, for any veloc-

ity profile that is symmetric about the midline of the

channel. In terms of the transformed variable

y 0 = y � 1/2, we then have u = f1(y
0), an even function

of y 0, and since the only derivative in the transformed

form of Eq. (8) is of even order, it follows that the solu-

tion is of the form

T ¼ Nuf 2ðy0Þ � 2by0 ð20Þ

and so

uT ¼ Nuf 3ðy0Þ þ bgðy0Þ ð21Þ

where f2(y
0) and f3(y

0) are even functions and g(y 0) is an

odd function. When we substitute in the compatibility

equationZ 1=2

�1=2

uT dy0 ¼ 1 ð22Þ

we find that the term in b vanishes, because of cancella-

tion, and we are left with

Nu ¼
Z 1=2

�1=2

f3ðy0Þdy0
( )�1

ð23Þ

and this is obviously independent of b, and hence inde-

pendent of whether the heating is symmetric or

asymmetric.
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4. Proof of the theorem for the isotemperature case, and

discussion

For the isoflux case (heat fluxes held uniform at each

wall) it has been established that, when the Nusselt num-

ber is defined in terms of the average wall heat flux and

average temperature, the value of this Nusselt number

does not depend on whether the walls are heated sym-

metrically or asymmetrically, provided that the velocity

profile is symmetric about the center line of the channel.

This means that many results reported in the literature

for the restricted case of symmetric heating are also

applicable in the more general case of asymmetric

heating.

In the isotemperature case (uniform wall temperature

at each wall) the above argument involving even and

odd functions is still valid in its essential features, but

the details of the proof are complicated in the general

case because now the solution for T emerges as an eigen-

function in a problem that involves Nu as an eigenvalue.

However, T is still expressible in the form

T ¼ Nuf ðy0Þ þ bgðy0Þ ð24Þ

where f(y 0) is an even function and g(y 0) is an odd func-

tion, and the rest of the proof follows through as before.

For the special case of slug flow (u = 1) the details of the

proof can be filled in easily. The problem reduces to

d2T
dy02

¼ �NuuT

T ð� 1

2
Þ ¼ b; T ð1

2
Þ ¼ �b

ð25a;bÞ

and the relevant solution of this eigenvalue problem

(and the compatibility condition) is given by

Nu ¼ p2

T ¼ p
2

cos py0 � b sinpy0
ð26a;bÞ

We conclude with a general remark. As far as the

author is aware, there has been no previously published

work on the isothermal asymmetric heating case for

forced convection in a channel, and a likely reason for

this can now be suggested. If one starts by thinking in

terms of a Nusselt number for each wall, then it is

impossible to follow the argument given in Section

3.4.4 of Bejan [1], because one obtains two temperature

differences that decay exponentially in the direction of

flow at different rates, and this is obviously inconsistent

with the assumption of fully developed convection.
When one applies the argument using the average wall

heat flux and the average wall temperature then there

is no difficulty.
5. Further discussion

For some practical purposes a knowledge of the aver-

age Nusselt number on its own may not provide suffi-

cient information. For example, in the case of specified

wall heat flux one might like to know something about

the individual wall temperatures. Once Nu has been

determined, the value of the parameter b can be calcu-

lated from Eq. (14), and with both Nu and b known

the defining Eqs. (7) and (10) allow the two wall temper-

atures (relative to bulk temperature) to be found. In fact,

from Eqs. (7) and (10) one obtains the formulas

T w1 � Tm ¼ Hq00

Nu
ð1 � 2bÞ

T w2 � Tm ¼ Hq00

Nu
ð1 þ 2bÞ

ð27a;bÞ

In other words, the information that one might other-

wise obtain from values Nu1 and Nu2 is available.

A similar situation applies to the isotemperature case.

With the two wall temperatures (relative to the bulk

temperature) specified, b is known from Eq. (10), and

with both Nu and b known, Eqs. (7) and (13a,b) deter-

mine the two wall heat fluxes.
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